Internal reference:
PrOd UCtS/EC FAT/AP I Refel’e nce/4060 - Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mbCode ~ Ay
-’
- -

ECFAT API Reference

Version 3.0.4

© Copyright 2015 EmbCode AB

EcFAT API Reference Page 1 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

Table of contents

1 GENERAL OPERATIONScoovvmimrineneeeeeneneeeeeeeeeeeesessnss 4
11 B R I NIT ettt ettt ettt e ettt e e e e e sttt e e e e e sa et e eeeeeeseaba b e e et e e e ee e anbae et eeeeeaanbaeeeeeeeeeanbreaeeeeeenaan 4
1.2 ECF _GETERRORMESSAGE....ccciutteeeiuitteeerutteesausteesstteeeeatteeesansteesaabeeesasreeesansteessabeeesansteeesaaneeessabseesasnseeesannnens 5

2 BLOCK DEVICE OPERATIONSciiiiiiimueiiiiiiiininessiissiinssssssssssssissssmssanns 6
2.1 ECF _IMIOUNT ...ttt ettt ettt e ettt e ettt e e ettt e sttt e e st e e e e abbe e e s me e e e e sabeeeeeasbe e e snnbeessabeeeeansbeeesanneeeeaabeeesannreeesannaeas 6
2.2 ECF _UNMOUNT ettt ettt ettt e s ettt s bt e e s s b et e s e se e e e s sb b e e s s ba e e s e sb e e e smbe e e e sareeesenneeesannneas 9
2.3 B R _FORMAT ..ttt ettt ettt ettt e ettt e ettt e st e e sabb e e e e ettt e s asb e e e sabb e e e e s beeesaaabee e s bbeeeenbeeesannbeeesanneeeeanbaeesannne 10
2.4 ECF _CREATEPARTITIONTABLE. .. .uttttttteeeeeiiiitteeeessesateteeeeesesaustataeeeesssaabasaaaeesssasasssaaaeesssesnntanaeeeesessasnnaeeeens 12
2.5 ECF _CREATEPARTITION tutttteeutteeestteeeenutteesauteeesuteeeesteeesausteeesasseeeeasbeeesaaseeessasseeeaanbeeesannsaeesanseeessnsenesanne 14
2.6 ECF_GETPARTITIONINFO ..cettiiieiiiitteteeeeeiittee e e e s ettt et e e e s ssibateeeeeeessaabattaeeeeesasasnbaaaeeessesaanbanaeaeesessnsnnaeeeens 15
2.7 ECF _WEARLEVELFORMAT ...eiiiiittteiitteeeittteeestteeestteeeeubeee s usteeesabeeeeeaabeeesaanteeesasbeeeeanbeeesansteesanseeessnbanesannne 16
2.8 ECF _GETBLOCKDRIVERSTATISTICS. ..tttteteeeuuuteteeeessasusrureeesesssasssraeesessssssssseesesssssassssseeessssssssseseeessssssnsssseeees 18

3 FILE SYSTEM OPERATIONSuuiiiiiiiiiiiiiiiisiisisisssnns 19
3.1 ECF _FLUSH ctttteet ettt ettt ettt e e e s ettt e e e e s e sttt e e e e e e s ababaaeeeeeseababeaaeeeesesanbaaeeaeesessnbaraeaeens 19
3.2 ECF _CALCULATEFREESPACEuuvttieiiteeeeitteeeeiteeesiteeeeitteeseubteeesabteeeessbeeesaasteeesabbteeeanbeeesaassteesanneeesanbeeesnanes 20

4 FILE OPERATIONS ...iiiiiiiiiiiiiiiiiiiiiiiiisisissens 21
4.1 ECF _OPENFILE «eieeeieieieeeeese e e ses s s se s e s e e e e e e e se s e s e e e s e se s e e e s e s e s e s e e e seseaesesesesasasasasasasasasasasesesesasssnsnsnsesesnsnsnsnsesasesns 21
4.2 B CF _CLOSEFILE. ..ttt iiteteeeitte e ettt ettt ettt s et e e st e e ettt e st e e s na e e e e s b et e s aann e e e s s et e e e n b et e senree e s nneeeeanreeeeeanne 23
4.3 B F R EADFILE s eieieieieteee e e e e e e e e e s e s e s e e e s e s e s e s e s e s e s e s e s e s e s e e e sesesesasasesasesesesasasesasasesasesssnsesssnsnsssnsnsnsnsnsnns 24
4.4 ECF _WVRITEFILE .ttt eiteeeeeitte ettt ettt ettt e s ettt e st e e s ma e e e mb e e e s e e e e e sanaeeeeanreeesannneeesannneseanrenesannne 26
4.5 O Y = 4G 1 TR 27
4.6 B CF _GETFILESIZE .. eeteeeeette ettt ettt ettt et e st e e s e e e s b e e s e ne e e e s nae e e e s b e e e s enr e e e sanneeeearaeeseanee 28
4.7 ECF _GETFILEPOSITION ittt ittt ieieieeeee e e e ee e e s e e e e e ee s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesesesasasasasesasasasesesssnsesesasnsesens 29
4.8 ECF _SETFILEATTRIBUTES ...ttt eutteeesnteesesreeeseseeessneeesesreeesanneeeesanereseanreeesannneessnaeeseanresesanneeesanneesssnnenesanne 30
4.9 ECF RENAME . tiieeeteieteeeeese s e e s e s e e e s e s e e e e e s e s e s e s e s e s e s e s e s e s e sesesesesesasasasesasasasasasesasasesesesesesesesssssnsesesesnsnsnsesnsnsesns 31
O =L 01 e 0 1 2 o TSP PP PTPROPI 32
A.11 ECF _PATHEXISTS «euittteeitteeentteeeeitteeeesiteeesttteesaubeeeseasteeesabbteeeaabaeeseasbeeesaseteeeaabteeeaanbaeesabeeesaabbeeesnsaeesnnneens 33
4,12 ECF_GETFILEINFO c.ettteieiteee sttt e ettt e sttt e sttt e s e sttt e s et e e sase e e e e sab et e saasr e e e sanneeeeanreeesanneeesnnneessaneeesenraeesannneas 34

5 DIRECTORY OPERATIONS......ccttiitiiiiiiiiiiiiiiiiiiiissiissnns 35
5.1 ECF _CREATEDIRECTORY .ieieieieieieieieieieieseseiesesesesesesesesesesesesesesesesasesesesesesesesasesesssssssesssesesssesesesesesssesnsnsesesnns 35
5.2 ECF _SCANDIRBEGIN ...eeeteuttite ettt e sttt e ettt e sttt e e st e s ettt esesee e e e sans e e e e mbe e e sannneeesanaeeseaareeesannneeesnneeessnranesannne 36
53 ECF _SCANDIRNEXT «iiieieieieieeeeeieee e e e e e ee e e e e e e e e e e s e e e e e s e s e s e s e s e s e e e e e eeseseseaeaesesasesasesasesasasasasasesesesasesesesesesesnsnsnsns 37

6 DIRECT BLOCK ACCESSuuiiiiiiiiiiiiiiisiiiisiisiissnns 38
6.1 ECF_GETVOLUMEINFORMATION ... cttteieieieieieieieseeesssssssssssssssesssssssssssssssssesesssssesns 38
6.2 ECF _READSECTOR .. .uttteeurteesainreeesnttesessreeesasteeesaneeesessbeeesanne e e e sansee e e sbeeesannneeesanseeeeaabeeesannneeesnnneesanranesannne 39
6.3 ECF _WWRITESECTOR «ieieieieieieieieieeeeeie s e s e se s e sese s e ee s e eeseseseeeseseseeeseseeeaesesesesesesesesesesesssesesesasesesesesesesesssesnsesnsesnns 40
6.4 ECF _TRIMSECTORRANGE.ceeiiutttteiitteeeitteeseitteesnbeeeenteeesasseeeesaneee s e nreeesannneeesanseeseanreeesannreeesnneeessnranesannne 42

7 DATA STRUCTUREScotiiiiieeiiiiiiiniiieisissiinsseeesss st rssssassssss st esssasssssss st s sssssssssssstesssssssssssstnensnnssssssssnnns 43
7.1 STRUCT ECF_BLOCKDRIVER .. .ttteiuttttesitteeesittte s ettt e siteeessuseeesennteeesnnseeesanstessnbeeesannneeesanseeessnseeesennsneesannneas 43

7.1.1 LI (=0 1o MY =10t (o] TSP TSR I 44

EcFAT API Reference Page 2 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

Products/EcFAT/API Reference/4060 ® Software for your embeaded system *
7.1.2 LI (N =R YT (o RS 46
7.1.3 M_fNGEtVOIUMEINFOIrMOLIONcoeueiaiiieiieeee ettt 48
7.1.4 M_fNTIIMSECEOTRANGEooeeeeeeeeeeee ettt e e ettt e e ettt e et e e e et a e s e st e e essseaeatsesaeasseaesansees 49

7.2 STRUCT ECF_FILEHANDLE ..eutttieiiitite sttt ee ettt sttt ettt a e st e s e e e s na e e e smbe e e s sab e e e s enneeesnnneas 51
7.3 STRUCT ECF_FILEDIRECTORYDATA . ..c..ttiitiitierttettett ettt sttt ettt sate s st st e et e sn et tese e sne e b e e r e e e emnesanesmeennee 52
7.4 STRUCT ECF _DATETIME...eteiiitiieiiitteesittee sttt s ettt st e st e s et e e s eiba e e sba e e e e b e s e s bae e e smbeeessabaeesennaeesnnaeas 53
7.4.1 CONVEIEING TO LIME_Tccceeeeeeieeeieeeeeeee et eaaaeaas 54
7.4.2 CONVEItiNgG froOM tIME_t.....ccccueeeiiiieeeeeeee ettt ettt ettt enanees 55

8 OPTIONS (DEFINES) ..ceerieuueeiiissueeiiisieneiiiseeeissssnessssssnesssssesssssssesssssssesssssesssssssesssssssesssssssessssassessssasesssssnns 56
8.1 ECF_OPT_SUPPORT_ALL_SECTORSIZES ... s s s e e e 56
8.2 ECF_OPT_SUPPORTED_MOUNTPOINTS....cccteittettetieitenieenieenteenreetesresieesieesieesseesseenseensesssesseesseesseensens 56
8.3 ECF _OPT _SUPPORT _FORM AT e s e s s e s e s s e s e s e s e s e sese s e sese s e e e sesesesasnss 56
8.4 ECF_OPT_SUPPORT_LONG_FILENAMESeoitiiieiieiieeitenieenieentee st ste st st saeesne e et et satesneesneenbeennens 56
8.5 ECF_OPT_SECTOR _CACHE. ... e s s s s e s e s se e e s e s e e e e e s e e e eeseeans 56
8.6 ECF_OPT_ATTEMPT_ORDERED_WRITEocittiitiiiieiieiteniienieentee ettt st st sieesne ettt eseesneesneesneeneas 56
8.7 ECF_OPT_USE_MUTEX cooouvieeiecteeeseeeseeescsesesssssssesessssessssssssssssasssasssssssssssssassassassssasssssssasssssssasesssnsanes 56
8.8 ECF_OPT_PROGRESS_CALLBACK........eiteiterttentteitett ettt stte st et et stesatesieesbeesbe e st eteeatesbeesbeesbeenbeennens 57
8.9 ECF_OPT_WATCHDOG_CALLBACK ... e s s s e e s e s s e s e e e as 57
8.10 ECF_OPT_CURRENT_TIME_FUNCTION ...cciiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeteeeee e ee s et e s e e e reeeeesesesesesesesesesesesasens 58
8.11 ECF_OPT_CUSTOM_CRC_ROUTINE....cccttrterieriterieenttete et eitesttesteesteetestesieesieeseeesreenseenseensesneesseenseensens 58
8.12 ECF_OPT_SUPPORT_WEARLEVEL........ttitttiiieiitteiiieesitt st e sttt e sttt e sete e it satessaeeesaeeesseeesaneesneeesaneennnes 59
8.13 ECF_OPT_WEARLEVEL_IMETA_CACHE ..ottt ettt sttt sttt et sbee b b s 59
8.14 ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENTc.ovivieeeeteeeeeeeeeseeseeeeeeeeeseetenesen e eseseseese s eenens 59
8.15 ECF_OPT_WEARLEVEL_MAX_BAD_BLOCK_COUNT ...c.tiitieutinrieniienieeieniesitesieeseeeneeenseeeeeneesneesreenseennens 59

EcFAT API Reference Page 3 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

1 General operations

1.1 ECF_Init

EmbCodecc

- Software for your embedded system

The ECF_lInit function initialises the ECFAT file system driver. It must be called before any of the other

functions can be called.

ECF_ErrorCode ECF_Init(void);

Parameters
None

Return value

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

If you haven't defined ECF_OPT_USE_MUTEX and aren't using a multithreaded system,
ECF_Init() cannot fail and there is no need to check the return code.

Remarks

There is no need to uninitialize ECFAT. Just make sure you have unmounted all the drives when

you exit.

Example Code
See ECF_Mount

EcFAT API Reference

Page 4 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

1.2 ECF_GetErrorMessage

The ECF_GetErrorMessage function translates an ECF_ErrorCode to a readable string.

const char * ECF_GetErrorMessage (

ECF_ErrorCode err

)/

Parameters

err

This is the ECF_ErrorCode to translate.

Return value

EmbCodecc

- Software for your embedded system

Returns a const string that can be displayed to the end user.

Remarks

Error codes between ECFERR_BLOCKDRIVER_ERROR_FIRST and

ECFERR_BLOCKDRIVER_ERROR_LAST are reserved for block driver errors and

ECF_GetErrorMessage will not return a meaningful error message for these error codes.

Example Code
See ECF_Mount

EcFAT API Reference

Page 5 of 59

Document name: Version

EcFAT API Reference 3.0.4 mbCOde

Internal reference: b
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system - ®

2 Block device operations

2.1 ECF_Mount

The ECF_Mount function mounts a file system.

ECF_ErrorCode ECF_Mount (
char driveLetter,
struct ECF_BlockDriver *pBlockDriver,
uintlé_t flags

);

Parameters

drivelLetter
This is the drive letter you want to use to refer to this file system. E.g. ‘A’

pBlockDriver
This is a pointer to the ECF_BlockDriver struct that allows the file system to access your block
device.

flags
These are flags specifying which partition to mount.

ECF_MOUNT PARTITION AUTO:
Attempts to mount partition 1 if a partition table exists but will mount partitionless if not. This is
the default and recommended for most applications.

ECF_MOUNT PARTITIONLI:
Mounts partition 1 on the block device. This is usually the case for mounting an SD Card.

ECF_MOUNT PARTITION2:
Mounts partition 2 on the block device.

ECF_MOUNT PARTITION3:
Mounts partition 3 on the block device.

ECF MOUNT PARTITION4:
Mounts partition 4 on the block device.

ECF MOUNT PARTITIONLESS:
Mounts a block device that does not contain a partition table. This is usually the case when
mounting a block device that resides on an embedded flash.

ECF MOUNT JOURNAL:
Activates journaling for the mounted patrtition.

Activating journaling will auto-create the necessary JOURNAL.ECF file in the root folder
automatically.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

EcFAT API Reference Page 6 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system

Remarks
This must be called before accessing files on the disk.

Example Code
#include <stdio.h>
#include <EcFAT/EcFAT.h>

// Use this buffer as a 32kb RAM Disk
uint8_t abRamDisk[64] [512] ;

ECF_ErrorCode RamDriver ReadSector (
struct ECF_BlockDriver *,
uint32 t dwSector,
uint8 t *pbData)

memcpy (pbData, abRamDisk[dwSector], 512) ;
return ECFERR SUCCESS;

}

ECF_ErrorCode RamDriver WriteSector (
struct ECF_BlockDriver ¥*,
uint32 t dwSector,
uint8 t *pbData)

memcpy (abRamDisk [dwSector], pbData, 512);
return ECFERR SUCCESS;

}

ECF_ErrorCode RamDriver GetVolumeInformation (
struct ECF BlockDriver *,
uintlé_t* pwSectorSize,
uint32 t* pdwNumberOfSectors)

*pwSectorSize = 512;
*pdwNumberOfSectors = 64;
return ECFERR SUCCESS;

}

int main (int argc, char **argv)
{
struct ECF BlockDriver bd;
ECF_ErrorCode err;

ECF_Init();
memset (&bd, 0, sizeof(bd));

bd.m fnReadSector = RamDriver ReadSector;
bd.m fnWriteSector = RamDriver WriteSector;

bd.m_fnGetVolumeInformation = RamDriver_GetVolumeInformation;

err = ECF_Format (&bd, ECF_CLUSTERSIZE AUTO, ECF_FORMAT QUICK) ;

if (err !'= ECFERR SUCCESS) {
printf ("Block device could not be formatted. Error:
ECF_GetErrorMessage (err)) ;
return 1;

err = ECF Mount('A', &bd, ECF _MOUNT PARTITION AUTO) ;

$s\r\n",

EcFAT API Reference

Page 7 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

if (err !'= ECFERR _ SUCCESS) ({

printf ("Block device could not be mounted. Error: %s\r\n",
ECF_GetErrorMessage (err)) ;

return 1;

}

// ... Read or write some files to the disk
err = ECF_Unmount('A');
if (exrr !'= ECFERR SUCCESS) {
printf ("Block device could not be unmounted. Error: %s\r\n",
ECF_GetErrorMessage (err)) ;
return 1;
}
}

See also
ECF_Format, ECF_Unmount

EcFAT API Reference Page 8 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

2.2 ECF_Unmount

The ECF_Unmount function unmounts a file system. It is very important to unmount a file system after
usage so that all the data is saved.

ECF_ErrorCode ECF_Unmount (
char driveLetter

)/

Parameters

driveletter
This is the drive letter of the file system you wish to unmount. E.g. 'A'.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
This must be called when you are done using a drive. If you are worried about power loss or
similar scenarios you do not need to call ECF_Unmount()/ECF_Mount() repeatedly. Call
ECF_Flush() instead to write all data to disk.

Example Code
See ECF_Mount

See also
ECF_Mount, ECF_Flush

EcFAT API Reference Page 9 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

2.3 ECF_Format

The ECF_Format function formats a block device to prepare it to hold files. It will erase all existing
data on the block device.

ECF_ErrorCode ECF_Format (
struct ECF_BlockDriver *pBlockDriver,
uintlé t clusterSize,
uintl6é_t flags

);

Parameters

pBlockDriver
This is a pointer to the ECF_BlockDriver struct that allows the file system to access your block
device.

clusterSize
This is the desired cluster size. Valid values are 512, 1024, 2048, 4096, 8192, 16384 and
32768.

ECF_CLUSTERSIZE AUTO:
Automatically select the smallest possible cluster size.

flags
Options to ECF_Format(). Several options can be used and are OR:ed together.

Specify only one or none of the ECF_FORMAT_PARTITIONLESS,
ECF_FORMAT_CREATE_PARTITION1 and ECF_FORMAT_PARTITIONXx flags. If none of
these flags is specified, ECF_FORMAT_PARTITIONLESS will be used as the default.

ECF_FORMAT PARTITIONLESS:
Format this block device without using a patrtition table. Recommended setting when
formatting an internal flash and you only want to use one partition. This is the default.

ECF_FORMAT CREATE PARTITIONI:
This will clear the partition table, create a partition that occupies the entire block device and
format it. Recommended setting when formatting an SD card and you only want to use one
partition.

ECF FORMAT PARTITIONI:
This will format partition 1. The partition must already exist.

ECF_FORMAT PARTITION2:
This will format partition 2. The partition must already exist.

ECF_FORMAT PARTITION3:
This will format partition 3. The partition must already exist.

ECF_FORMAT PARTITION4:
This will format partition 4. The partition must already exist.

ECF FORMAT QUICK:

EcFAT API Reference Page 10 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCode,

- Software for your embedded system

Performs a quick format by not clearing the data area of the disk when formatting.

Note: If you are using Trim support, the entire area will always be trimmed regardless of this

flag.

ECF_FORMAT ALIGN:

Aligns the cluster placement to the cluster size. This is useful if you are using flash memory to
store your file system. By using this flag and a suitable cluster size you can be sure that each
of the clusters is aligned to an even page boundary on your flash.

As an example, if you are using a flash with a page size of 4096 bytes it is recommended that
you enable the ECF_FORMAT_ALIGN flag and set the cluster size to 4096 for best results.

ECF_FORMAT ONLY FAT12:

Will force the FAT12 format. This will possibly waste space and create a FAT12 that is as big
as possible. It is useful if you want to make sure the formatted disk is compatible with ECFAT

Lite.

Return value

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks

ECF_Format will erase all the data on the block device. It needs to be called for an unformatted
block device before it can be mounted.

You need to specify ECF_OPT_SUPPORT_FORMAT in your Project.h for ECFAT to compile

with support for this function.

If you want to wear-level or use bad block management, you should call ECF_WearLevelFormat

before calling ECF_Format.

Example Code
See ECF_Mount

See also

ECF_Mount, ECF_WearLevelFormat, ECF_CreatePartitionTable, ECF_CreatePartition

EcFAT API Reference

Page 11 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mb COde
b

2.4 ECF_CreatePartitionTable

The ECF_CreatePartitionTable function creates an empty partition table. If one exists, it will be
overwritten.

ECF_ErrorCode ECF_CreatePartitionTable (
struct ECF_BlockDriver *pBlockDriver,
uintlé_t flags

)

Parameters

pBlockDriver
This is a pointer to a struct ECF_BlockDriver of the disk you want to create the partition table

on.

flags
Flags. No flags are currently defined, specify 0.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
You need to specify ECF_OPT_SUPPORT_FORMAT in your Project.h for ECFAT to compile

with support for this function.

Example Code
void InitializeDisk (struct ECF_BlockDriver *blockDriver)

{

// Error checking omitted, sector size of 512 assumed.

// Initialize the partition table
ECF_CreatePartitionTable (blockDriver, 0);

// Create partition 1: A 2 MiB FAT partition for configuration
ECF_CreatePartition (blockDriver, ECF_PARTITION TYPE FAT,
2*1024*1024/512, 0) ;

// Create partition 2: A 10 MiB FAT partition for logs
ECF_CreatePartition (blockDriver, ECF_PARTITION TYPE FAT,
10*1024*1024/512, 0) ;

// Create partition 3: The rest of the space as a RAW partition
// that we write data to directly
ECF_CreatePartition (blockDriver, ECF_PARTITION TYPE RAW, 0, 0);

// Format partition 1
ECF_Format (blockDriver, 512, ECF_FORMAT PARTITION1) ;

// Format partition 2
ECF_Format (blockDriver, 512, ECF_FORMAT PARTITION2) ;
}
See also
ECF_CreatePartition, ECF_Format

EcFAT API Reference Page 12 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCode,

Wi\ 1

- Software for your embedded system

EcFAT API Reference

Page 13 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 - Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mbCOde :
b

2.5 ECF_CreatePartition

The ECF_CreatePartition function creates a partition on the supplied block device.

ECF_ErrorCode ECF CreatePartition (
struct ECF_BlockDriver *pBlockDriver,
uint8 t partitionType,
uint32 t sizeInSectors,
uintl6é_t flags

);

Parameters

pBlockDriver
This is a pointer to a struct ECF_BlockDriver of the disk you want to create the partition on.

partitionType
The partition type:

ECF_PARTITION TYPE FAT:
Create a FAT partition to store a FAT file system on.

ECF_PARTITION TYPE RAW:
Create a RAW partition to store raw data in.

sizelnSectors
The size of the partition in sectors. Specify 0 to use all of the remaining space.

flags
Flags. No flags are currently defined, just specify 0.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
Call ECF_CreatePartitionTable() first to create/clear the partition table. Then call
ECF_CreatePartition() for each partition you want to create.

You need to specify ECF_OPT_SUPPORT_FORMAT in your Project.h for ECFAT to compile
with support for this function.

Example Code
See example for ECF_CreatePartitionTable

See also
ECF_CreatePartitionTable, ECF_Format

EcFAT API Reference Page 14 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

2.6 ECF_GetPartitionIinfo

The ECF_GetPartitionInfo function returns information about a partition on a block device.

ECF_ErrorCode ECF_GetPartitionInfo (
struct ECF_BlockDriver *pBlockDriver,
uint8 t partitionNumber,
uint8 t *pPartitionType,
uint32 t *pStartSector,
uint32 t *pPartitionSizeSectors

)/

Parameters

pBlockDriver

This is a pointer to a struct ECF_BlockDriver of the disk for which you want the partition

information.

partitionNumber
The number of the partition you wish to get info for. 1-4 are valid values.

pPartitionType
A pointer to a uint8_t that will receive the partition type

pStartSector
A pointer to a uint32_t that will receive the start sector of the partition.

pPartitionSizeSectors
A pointer to a uint32_t that will receive the size of the partition in sectors.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Returns ECFERR_NOPARTITION if the specified partition does not exist.

Returns ECFERR_NOPARTITIONTABLE if a partition table does not exist.

Remarks
None.

EcFAT API Reference

Page 15 of 59

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
Internal reference: b

PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

2.7 ECF_WearlLevelFormat

The ECF_WearlLevelFormat function formats a block device to prepare it to hold wear leveled data. It
will erase all existing data on the block device.

ECF_ErrorCode ECF_WearLevelFormat (
struct ECF_BlockDriver *pBlockDriver,
uintlé t maximumNumberOfBadBlocks,
uintl6é_t flags

);

Parameters

pBlockDriver
This is a pointer to the ECF_BlockDriver struct for the block device you want to prepare for wear
leveling.

maximumNumberOfBadBlocks
Specifies the maximum number of bad blocks/sectors the device can handle. Set to 0 if you
don't want to support bad block handling.

Must be 0 if ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT is not defined.
ECF_OPT_WEARLEVEL_MAX_BAD_BLOCK_COUNT (default 256) specifices the maximum
number of bad blocks ECFAT can handle. maximumNumberOfBadBlocks specifies the
maximum number of bad blocks the disc can store.

flags
Options to ECF_WearLevelFormat().

ECF_WEARLEVELFORMAT BAD BLOCK SCAN:
Will scan the device for bad blocks by attempting to write each block. The block driver must
report ECFERR_BADBLOCK for blocks that can not be written and that should be marked as
bad.

Only available if ECF_OPT_SUPPORT_BAD_ BLOCKS is defined.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
Wear-leveling is used to even out writes to flash memories. It is useful if you are storing data on
a device which only supports a limited write count on each sector and that doesn't have internal
wear leveling. This is typical for flash memories.

Because of the extra data structures necessary needed to keep track of the block relocation, a
wear leveled block device will use around 4-5% of the disk space for internal structures. The low
level format will not be FAT compatible although the upper layer will be. This means that you
cannot directly read the data from say a PC but converting it from the wear-leveled FAT form to
the regular FAT form is fairly easy.

ECF_WearLevelFormat will erase all the data on the block device. It needs to be called for an
unformatted block device before any of the other block device functions can be called.

EcFAT API Reference Page 16 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCodecom

- Software for your embedded system

In a typical case you will call ECF_WearLevelFormat() first followed by optionally
ECF_CreatePartitionTable/ECF_CreatePartition and finally ECF_Format for all your partitions.

You need to specify ECF_OPT_SUPPORT_WEARLEVEL and
ECF_OPT_SUPPORT_FORMAT in your Project.h for ECFAT to compile with support for this

function.

See also

ECF_CreatePartitionTable, ECF_CreatePartition, ECF_Format, ECF_Mount

EcFAT API Reference

Page 17 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

2.8 ECF_GetBlockDriverStatistics

The ECF_GetBlockDriverStatistics function returns statistics about a block device.

ECF_ErrorCode ECF_GetBlockDriverStatistics(
struct ECF_BlockDriver *pBlockDriver,
uintlé t statisticsType,
uint32 t *pValue

);

Parameters

pBlockDriver
This is a pointer to the ECF_BlockDriver struct that allows the file system to access your block
device.

statisticsType
Selects the value you want to retrieve.

ECF STATISTICS HIGHEST WRITE COUNT SEEN:
The highest write count seen on a wear-leveled block device.

Note that the function will only report the highest write count seen during this session so you
should ideally call it after you've done reads and writes to the disc or periodically. Calling it at
start-up will return a value that is too low in most cases.

Only available if ECF_OPT_SUPPORT_WEARLEVEL is defined.

ECF_STATISTICS BAD BLOCKS DETECTED:
The number of bad blocks detected on the disk.

Only available if ECF_OPT_SUPPORT_WEARLEVEL and
ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT is defined.

ECF_STATISTICS BAD BLOCKS SUPPORTED:
The maximum number of allowed bad blocks on the disk.

Only available if ECF_OPT_SUPPORT_WEARLEVEL and
ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT is defined.

pValue
This is a pointer to a uint32_t that will receive the value requested.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

EcFAT API Reference Page 18 of 59

Document name: Version
EcFAT API Reference 3.0.4 mb COde
b

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system

3 File system operations

3.1 ECF_Flush

ECF_Flush writes all unsaved data in the sector cache to the block device.

ECF_ErrorCode ECF_Flush (
char driveLetter

)/

Parameters

driveletter
This is the drive letter you want to use to refer to this file system. E.g. 'A'.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
Some systems that can experience sudden power loss can benefit from calling ECF_Flush
when it wants to make sure that all data has been written to the block device.

After a successful call to ECF_Flush the data is guaranteed to be written to the block device.

If you expect a power loss, you should also enable journaling (see ECF_Mount) to make sure
that writes will not corrupt the file system.

Example Code
#include <EcFAT/EcFAT.h>

void WriteToLogFile(struct ECF_FileHandle *pFileHandle, const char
*logEntry)

{
// Error checking omitted

ECF_WriteFile (pFileHandle, strlen(logEntry), logEntry)

// Make sure the log entry is actually written to disk.
// We assume that the file is located on drive 'A'.
ECF_Flush('A');

}

See also
ECF_Mount

EcFAT API Reference Page 19 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

3.2 ECF_CalculateFreeSpace

The ECF_CalculateFreeSpace function calculates the amount of free disk space on a mounted file
system.

ECF_ErrorCode ECF_CalculateFreeSpace (
char driveLetter,
uint32 t *pFreeSectors,
uintlé t *pSectorSize

) ;

Parameters

driveletter
This is the drive letter of the file system you which to calculate the free space of. E.g. ‘A’

pFreeSectors
This is a pointer to a uint32_t that will receive the number of free sectors.

pSectorSize
This is a pointer to a uint16_t that will receive the sector size. This parameter is not mandatory
and may be NULL.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
ECF_CalculateFreeSpace needs to scan the entire FAT table to get an accurate count of the
number of free sectors which may take some time.

EcFAT API Reference Page 20 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

4 File operations

4.1 ECF_OpenFile

ECF_OpenFile opens a file on a mounted file system.

ECF_ErrorCode ECF_OpenFile (
struct ECF_FileHandle *pFileHandle,
const char *filename,
uint8 t mode

)/

Parameters

pFileHandle
This is a pointer to a struct ECF_FileHandle structure to hold data about the open file. The
contents of the struct ECF_FileHandle will be cleared. There is no need to initialize it.

filename
This is the name of the file to open. Files are always specified with their full paths including the
drive letter. To open a file called "Log.txt" on drive A you will need to specify the filename:
A:\Log.txt (which is "A:\\Log.txt" when entered as a C string)

To open a file called "My file.data" in the directory "My folder" on drive B you need to specify the
filename: B:\My folder\My file.data ("B:\\My folder\\My file.data" as a C string)

The maximum total path length including the trailing NUL character is 260 characters.

mode
Specifies in which mode the file should be opened. Supported modes are:

ECF MODE READ:
Opens the file for reading. Reading will start at the beginning of the file.

ECF MODE READ WRITE:
Opens the file for reading and writing. Reading and writing will start from the beginning of the
file. If the file doesn't exist it will be created.

ECF MODE APPEND:
Opens the file for reading and writing. Writing the file will write to the end of it. If the file
doesn't exist it will be created.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
If the call to ECF_OpenFile was successful you can now use your file handle to call other file
operations.

You may open the same file several times but you may only open it once in write mode. This
enables you to have one process that logs data to a file while another process reads it.

EcFAT API Reference Page 21 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCode,

- Software for your embedded system

Example Code
#include <EcFAT/EcFAT.h>

void main(int argc, char **argv)

{

// ...Mount file system on

'A'

here. ..

struct ECF_FileHandle fileHandle;
const char *cszMessage = "This will be written to the file\n";

if (ECF_OpenFile (&fileHandle, "A:\\Log.txt", ECF_MODE_APPEND)

== ECFERR_SUCCESS)
{

// Error checking omitted
ECF _WriteFile(&fileHandle, cszMessage, strlen(cszMessage))

ECF_CloseFile(&fileHandle) ;

}
See also

ECF_ReadFile, ECF_WriteFile, ECF_SeekFile, ECF_GetFileSize, ECF_CloseFile

EcFAT API Reference

Page 22 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 'Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.04 mbCode =\
) ot

4.2 ECF_CloseFile

ECF_CloseFile closes an open file handle.

ECF_ErrorCode ECF CloseFile (
struct ECF_FileHandle *pFileHandle

)/

Parameters

pFileHandle
The pointer to an open file handle.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
Note: If you have opened a file in read/write mode, ECFAT will often write to the block device
when a file is closed. Since this might fail, it is important to check the error code even when you
close the file.

Example Code
See example for ECF_OpenFile()

See also
ECF_OpenFile

EcFAT API Reference Page 23 of 59

Document name: Version
EcFAT API Reference 3.0.4 mb COde
Internal reference: b

PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system ®

4.3 ECF_ReadFile

ECF_ReadFile reads data from an open file.

ECF_ErrorCode ECF_ReadFile (
struct ECF_FileHandle *pFileHandle,
uint8 t *pData,
uint32 t bytesToRead,
uint32 t *pBytesRead
);

Parameters

pFileHandle
A pointer to an open file handle.

pData
A pointer to a buffer big enough to hold the read data.

bytesToRead
The number of bytes to read.

pBytesRead

If not NULL, the uint32_t will be set to the number of bytes actually read. Also see the Remarks
section.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
If pBytesRead is NULL, ECF_ReadFile will attempt to read exactly the number of bytes
specified and return ECFERR_ENDOFFILE if there is not enough data available in the file. This
is the behaviour of ECFAT 2.2 and previous.

If pBytesRead is not NULL, ECF_ReadFile will attempt to read the number of bytes specified by
bytesToRead. If there aren't enough data available ECFERR_SUCCESS will still be returned.
pBytesRead will be set to the actual number of bytes read. If there are no bytes available to
read ECFERR_ENDOFFILE will be returned.

Example Code
#include <EcFAT/EcFAT.h>

#define COPYFILE BUFFERSIZE 4096

void CopyFile (const char *sourceFileName, const char
*destinationFileName)
{
struct ECF FileHandle sourceFileHandle;
struct ECF _FileHandle destinationFileHandle;
uint32 t bytesRead;
uint8 t abCopyBuffer [COPYFILE BUFFERSIZE] ;

// Error checking omitted
ECF _OpenFile (&sourceFileHandle, sourceFileName, ECF_MODE READ) ;

EcFAT API Reference Page 24 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCodec

- Software for your embedded system

ECF_OpenFile (&destinationFileHandle, destinationFileName,

ECF_MODE_READ WRITE) ;

while (ECFERR SUCCES

ECF_ReadFile (&sourceFileHandle, abCopyBuffer,

COPYFILE BUFFERSIZE, &bytesRead))

{

ECF _WriteFile(&destinationFileHandle, abCopyBuffer, bytesRead);

}

ECF_CloseFile(&destinationFileHandle) ;

ECF_CloseFile(&sourceFileHandle) ;

}

See also
ECF_OpenFile

EcFAT API Reference

Page 25 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

4.4 ECF_WriteFile

ECF_WriteFile writes data to an open file.

ECF_ErrorCode ECF WriteFile (

struct ECF_FileHandle *pFileHandle,

const uint8 t *pData,
uint32 t bytesToWrite
);

Parameters

pFileHandle
A pointer to an open file handle.

pData

A pointer to a buffer that holds the data to be written.

bytesToWrite
The number of bytes to write.

Return value

EmbCodec:

- Software for your embedded system

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks

If you attempt to write past the end of the file, the file will be extended to hold all the written

data.

Example Code
See example for ECF_ReadFile.

See also
ECF_OpenFile

EcFAT API Reference

Page 26 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.0.4 mbCOde :
b

PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

4.5 ECF_SeekFile

ECF_SeekFile changes the position of the file cursor within a file.

ECF_ErrorCode ECF_SeekFile (
struct ECF_FileHandle *pFileHandle,
uint32 t position

) ;

Parameters

pFileHandle
A pointer to an open file handle.

position
The absolute position within the file to move the file cursor to.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks

This function only moves the cursor to an absolute position within the file. If you want to move it

relative to the current position or relative to the end of the file, you need to call
ECF_GetFileSize() and ECF_GetFilePosition() to calculate where to move.

See also
ECF_GetFilePosition, ECF_GetFileSize

EcFAT API Reference

Page 27 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.04 mbCode =\
) ot

PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

4.6 ECF_GetFileSize

ECF_GetFileSize function gets the size of a currently open file.

ECF_ErrorCode ECF_GetFileSize(
const struct ECF_FileHandle *pFileHandle,
uint32 t *pFileSize

)

Parameters

pFileHandle
A pointer to an open file handle.

pFileSize
A pointer to a uint32_t to hold the file size.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks

This can only be used to retrieve the size of an open file. To get the size of a file on disk, use

ECF_GetFilelnfo() instead.

See also
ECF_GetFilelnfo

EcFAT API Reference

Page 28 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.04 mbCode =\
) ot

PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

4.7 ECF_GetFilePosition

ECF_GetFilePosition function retrieves the position of the cursor in a currently open file.

ECF_ErrorCode ECF_GetFilePosition(
const struct ECF_FileHandle *pFileHandle,
uint32 t *pFilePosition

)

Parameters

pFileHandle
A pointer to an open file handle.

pFilePosition
A pointer to a uint32_t to hold the file position.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
None.

EcFAT API Reference

Page 29 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mbCOde :
b

4.8 ECF_SetFileAttributes

The ECF_SetFileAttributes function sets the attributes of an open file.

ECF_ErrorCode ECF_SetFileAttributes (
struct ECF_FileHandle *pFileHandle,
uint8 t newAttributes

)/

Parameters

pFileHandle
The handle of the open file previously obtained by ECF_OpenFile.

newAttributes
The attributes that will be set when the function returns.

ECF ATTR READ ONLY:
Marks the file as read only. Note that ECFAT will currently not honour this flag when opening
files.

ECF ATTR HIDDEN:
Marks the file as hidden.

ECF ATTR SYSTEM:
Marks the file as a system file.

ECF ATTR ARCHIVE:
Marks the file as archived.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
Note that the attributes not passed in the newAttributes parameter will be cleared.

EcFAT API Reference Page 30 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.0.4 mbCOde :
b

PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

4.9 ECF_Rename

The ECF_Rename function renames a file or directory.

ECF_ErrorCode ECF_Rename (
const char *oldPath,
const char *newPath

) ;

Parameters
oldPath
This is the path of the file or directory to rename.

newPath
This is the new path of the file or directory.

The maximum total path length including the trailing NUL character is 260 characters.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
oldPath and newPath must be on the same drive.

The subdirectories in the new path does not need to exist. If they don't exist, they will be

created.

You must not rename an open file or a directory that is being scanned.

EcFAT API Reference

Page 31 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

4.10 ECF_Delete

The ECF_Delete function deletes a file or directory.

ECF_ErrorCode ECF Delete (
const char *path

)/

Parameters

path

This is the path of the file or directory to delete.

Return value

EmbCodec:

- Software for your embedded system

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks

If a directory is given as argument, ECF_Delete() will also recursively remove all the directories
and files contained within that directory.

EcFAT API Reference

Page 32 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

4.11 ECF_PathExists

EmbCodecom

- Software for your embedded system

The ECF_PathExists function checks if a path exists on a mounted file system.

ECF_ErrorCode ECF_ PathExists (
const char *path,
uint8 t *pIsDirectory

) ;

Parameters

path
The path to check.

plsDirectory

A pointer to a uint8_t which will be set to 1 if the supplied path is a directory. This parameter is
not mandatory and may be NULL.

Return value

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success).

ECFERR_PATHNOTFOUND will be returned if the path does not exist.

Remarks
None.

EcFAT API Reference

Page 33 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

4.12 ECF_GetFilelnfo

EmbCodec:

- Software for your embedded system

The ECF_GetFilelnfo function retrieves information about a specific file or directory.

ECF_ErrorCode ECF_GetFileInfo(

const char *path,

struct ECF_FileDirectoryData *pFileDirectoryData

) ;

Parameters

path

This is the path to the file or directory to retrieve data about.

pFileDirectoryData

This is a pointer to a struct that will be filled with information about the file or directory.

Return value

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
None.

EcFAT API Reference

Page 34 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

5 Directory operations

5.1 ECF_CreateDirectory

The ECF_CreateDirectory function creates a new directory.

ECF_ErrorCode ECF_CreateDirectory (

const char *path

)/

Parameters

path

EmbCodec:

- Software for your embedded system

This is the name of directory to create. E.g. "A:\My new directory” ("A:\\My new directory” as a C

string)

The maximum total path length including the trailing NUL character is 260 characters.

Return value

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
None.

EcFAT API Reference

Page 35 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mb COde
b

5.2 ECF_ScanDirBegin

The ECF_ScanDirBegin function starts the scan of a directory.

ECF_ErrorCode ECF_ScanDirBegin (
struct ECF_FileHandle *pScanDirPosition,
const char *path

) ;

Parameters

pScanDirPosition
This a pointer to a struct ECF_FileHandle that ECFAT will use to keep track of the directory
scan. You do not need to initialize the struct, ECF_ScanDirBegin will initialize it for you.

path
This is the path to scan. E.g. "A:\My directory" ("A:\\My directory" as a C string).

The maximum total path length including the trailing NUL character is 260 characters.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
None.

Example Code
void ListDirectory(const char *path)
{
ECF_ErrorCode err;
struct ECF_FileHandle scanHandle;
struct ECF_FileDirectoryData fileData;

// Error checking omitted
ECF_ScanDirBegin (&scanHandle, path));

while (ECFERR _SUCCESS == ECF_ScanDirNext (&scanHandle, &fileData))
{
// Skip the entry if it starts with
if (fileData.m_szFileName[0] == '.')
continue;

if (fileData .m_dirAttr & ECF_ATTR_DIRECTORY)
printf ("$s <DIR>\r\n", fileData.m szFileName) ;
else
printf ("$s\r\n", fileData.m szFileName) ;

}
See also

ECF_ScanDirNext

EcFAT API Reference Page 36 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

5.3 ECF_ScanDirNext

The ECF_ScanDirNext function retrieves information about the next file or directory in a directory
scan.

ECF_ErrorCode ECF_ScanDirNext (
struct ECF_FileHandle *pScanDirPosition,
struct ECF_FileDirectoryData *pFileDirectoryData

) ;

Parameters

pScanDirPosition
This is a pointer to the struct previously initialized by ECF_ScanDirBegin.

pFileDirectoryData
This struct will be filled with information about the next available file/directory.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Returns ECF_NOMOREFILES when all the entries in the directory have been scanned.

Remarks
When you scan a directory, the special entries "." and ".." (for the current and the parent
directory) will be returned. Most users want to ignore these so be sure to check for these
names.

Example Code
See example for ECF_ScanDirBegin().

See also
ECF_ScanDirBegin

EcFAT API Reference Page 37 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

6 Direct block access

6.1 ECF_GetVolumelnformation

ECF_GetVolumelnformation returns information about the disk size and sector size of a block device.

ECF_ErrorCode ECF_GetVolumeInformation (
struct ECF_BlockDriver *pBlockDriver,
uintlé t *pSectorSize,
uint32_t *pNumberOfSectors

)

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver to get volume information from.

pSectorSize
This is a pointer to a uint16_t that will be set to the sector size.

pNumberOfSectors
This is a pointer to a uint32_t that will be set to the number of sectors.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
The difference between calling ECF_GetVolumelnformation and calling the block driver's
m_fnGetVolumelnformation directly is that ECF_GetVolumelnformation will properly handle
wear leveling and locking of the block driver. If the device is wear-leveled,
ECF_GetVolumelnformation will return the number of blocks that is actually usable which will be
less than the value return by m_fnGetVolumelnformation.

See also
m_fnGetVolumelnformation, ECF_Mount

EcFAT API Reference Page 38 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 - Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

6.2 ECF_ReadSector

ECF_ReadSector reads a single sector from a block device.

ECF_ErrorCode ECF_ ReadSector (
struct ECF_BlockDriver *pBlockDriver,
uint32 t sector,
uint8 t *pData,
uint8 t flags
)

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver where you want to read a sector.

sector
This specifies which sector to read.

pData
This points to a uint8_t array that the block driver needs to fill with the read data.

flags
These are flags for the read.

ECF READSECTOR BYPASS WEARLEVELING:
If this flag is set, the block driver will bypass the wear leveling layer and read a physical
sector. There are very few reasons, if any, to do this.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks
The difference between calling ECF_ReadSector and calling the block driver's m_fnReadSector
directly is that ECF_ReadSector will properly handle wear leveling and locking of the block
driver.

ECF_ReadSector will automatically handle wear leveling and read sectors even when they have
been moved because of wear leveling.

The normal use case for ECF_ReadSector is for reading sectors from a RAW partition without
file system.

See also
m_fnReadSector, ECF_Mount

EcFAT API Reference Page 39 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

6.3 ECF_WriteSector

ECF_WriteSector writes a single sector to the block device.

ECF_ErrorCode ECF WriteSector (
struct ECF_BlockDriver *pBlockDriver,
uint32 t sector,
uint8 t *pData,
uint8 t flags
);

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver to write sectors in.

sector
This specifies which sector to write.

pData
This points to a uint8_t array with the data for the block driver to write.

flags
These are flags for the write.

ECF WRITESECTOR BYPASS WEARLEVELING:
If this flag is set, the block driver will bypass the wear leveling layer and write a physical
sector. There are very few reasons, if any, to do this.

ECF_WRITESECTOR ALLOW BUFFER OVERWRITE:
Set this flag if you allow ECFAT to overwrite the buffer passed in pData. Useful if you will not
reuse that data you just wrote since it will speed up ECFAT slightly.

Return value
Returns one of the ECFAT error codes (ECFERR_SUCCESS on success).

Will return ECFERR_BUFFEROVERWRITTEN if
ECF_WRITESECTOR_ALLOW_BUFFER_OVERWRITE was set and the buffer was actually
overwritten.

Remarks
The difference between calling ECF_WriteSector and calling the block driver's m_fnWriteSector
directly is that ECF_WriteSector will properly handle wear leveling and locking of the block
driver.

ECF_WriteSector will automatically handle wear leveling and move blocks that are written
frequently.

The normal use case for ECF_WriteSector is for writing sectors to a RAW patrtition without file
system.

See also
m_fnWriteSector, ECF_Mount

EcFAT API Reference Page 40 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCode,

Wi\ 1

- Software for your embedded system

EcFAT API Reference

Page 41 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel’ence/4060 - Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mbCOde aY

6.4 ECF_TrimSectorRange

ECF_TrimSectorRange trims a range of sectors on the block device. By trimming sectors, you signal
that the sectors are not used and does not need to be stored.

ECF_ErrorCode ECF_TrimSectorRange (

)/

struct ECF_BlockDriver *pBlockDriver,
uint32 t startSector,

uint32 t endSector,

uint8 t flags

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver to trim sectors information in.

startSector
This specifies the first sector to trim.

endSector
This specifies the last sector to trim.

flags
No flags are defined, pass 0.

Return value

Returns one of the ECFAT error codes (ECFERR_SUCCESS on success)

Remarks

The difference between calling ECF_TrimSectorRange and calling the block driver's
m_fnTrimSectorRange directly is that ECF_TrimSectorRange will properly handle wear leveling
and locking of the block driver.

See also

m_fnTrimSectorRange, ECF_Mount

EcFAT API Reference

Page 42 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system ®

Document name: Version
EcFAT API Reference 3.0.4 mb COde
b

7 Data structures

7.1 struct ECF_BlockDriver

struct ECF_BlockDriver is used by ECF_Mount() and ECF_Format() to get access to the storage
device.

struct ECF_BlockDriver

{
ECF_ErrorCode (*m_ fnReadSector) (struct ECF BlockDriver ¥*,
DWORD sector, BYTE *data);
ECF_ErrorCode (*m_fnWriteSector) (struct ECF_BlockDriver *,
DWORD sector, BYTE *data) ;
ECF_ErrorCode (*m_fnGetVolumeInformation) (struct ECF_BlockDriver *,
WORD* pwSectorSize, DWORD* pdwNumberOfSectors) ;
ECF_ErrorCode (*m_fnTrimSectorRange) (struct ECF_BlockDriver *,
DWORD dwStartSector, DWORD dwEndSector) ;
void *m BlockDriverData;
};
Members
m_fnReadSector:
This is a pointer to a function that ECFAT can call to read a sector from the storage device.
m_fnWriteSector:
This is a pointer to a function that ECFAT can call to write a sector to the storage device.
m_fnGetVolumelnformation:
This is a pointer to a function that ECFAT can call to get information about the sector size and
total size of the storage device.
m_fnTrimSector:
This is a pointer to a function that ECFAT can call to trim a sector. This is optional and can be
NULL.
m_BlockDriverData:
A void pointer that can be used by the block driver to store private data. ECFAT will pass a
pointer to the ECF_BlockDriver struct when it calls any of the functions above. The block driver
can use these to access its private data.
Remarks

These functions must be created by the user. An instance of the struct ECF_BlockDriver must
be cleared, filled with pointers to these functions and passed to ECF_Mount() and
ECF_Format().

If your block driver only supports one instance, you don’t need to use m_BlockDriverData, you
can just use global variables instead.

EcFAT API Reference Page 43 of 59

Internal reference:

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

7.1.1 m_fnReadSector

m_fnReadSector reads a single sector from the block device (usually an SD card or flash memory).

ECF_ErrorCode m_fnReadSector (

) ;

struct ECF_BlockDriver *pBlockDriver,
uint32 t sector,

uint8 t *pData,

uint8 t flags

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used
by the block driver to access the m_BlockDriverData member or to call the other functions.

sector
This specifies which sector to read.

pData
This points to a uint8_t array that the block driver needs to fill with the read data.

flags
These are flags for the read.

ECF_READSECTOR 512 BYTES ONLY:
If this flag is set, the block driver only needs to read 512 bytes, regardless of the sector size
and the buffer pointed to by pData is only 512 bytes big, regardless of the sector size.

Return value

Return ECFERR_SUCCESS if the read was successful.

If the read fails, return one of the ECFAT error codes defined in ECFAT.h. You can also define
your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks

EcFAT will call this function when it wants to read a sector from the storage device. The
m_fnReadSector function is part of struct ECF_BlockDriver. You need to supply it when writing
a block driver.

On both single- and multithreaded systems, ECFAT will make certain that it will not call any of
the other block driver functions until this call has been completed so you do not need to
implement any locking in the block driver unless it is needed for other purposes.

Note: If you use journaling and/or wear-leveling, you must respect the
ECF_READSECTOR_512 BYTES_ONLY flag. If you ignore it and the sector size is larger than
512 bytes, reading an entire sector will write beyond the end of the buffer pointed to by pData
and corrupt the system.

Example Code

// Create a global to hold our data. Make it 64 kb

EcFAT API Reference Page 44 of 59

Internal reference:
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
b

uint8 t ramDriveData[64][1024];

ECF_ErrorCode RAM GetVolumeInformation (

}

struct ECF_BlockDriver *pBlockDriver,
uintl6é_t* pSectorSize,
uint32 t* pNumberOfSectors)

*pSectorSize = 1024;
*pNumberOfSectors = 64;

return ECFERR SUCCESS;

ECF_ErrorCode RAM ReadSector (struct ECF_BlockDriver *pBlockDriver,
uint32 t sector, uint8_t *pData, uint8_t flags)

{

}

if (sector >= 64)
return ECFERR_PARAMETERERROR;

if (flags & ECF_READSECTOR 512 BYTES_ONLY)
memcpy (pData, ramDriveData[sector], 512);
else
memcpy (pData, ramDriveData[sector], 1024);

return ECFERR_SUCCESS;

ECF_ErrorCode RAM WriteSector (struct ECF_BlockDriver *pBlockDriver,
uint32 t sector, uint8_t *pData, uint8_t flags)

{

}

if (sector >= 64)
return ECFERR PARAMETERERROR;

if (flags & ECF_WRITESECTOR 512 BYTES_ONLY)
memcpy (ramDriveData[sector], pData, 512);
else
memcpy (ramDriveData[sector], pData, 1024);

return ECFERR_SUCCESS;

int main (void)

{

struct ECF_BlockDriver blockDriver;

memset (&blockDriver, 0, sizeof (struct ECF_BlockDriver)) ;
blockDriver.m fnReadSector = RAM ReadSector;
blockDriver.m fnWriteSector = RAM WriteSector;

blockDriver.m fnGetVolumeInformation = RAM GetVolumeInformation;

// You can now call ECF_Mount() or ECF_Format() with blockDriver

EcFAT API Reference

Page 45 of 59

Document name: Version
EcFAT API Reference 3.0.4 mbCOde
Internal reference: b

PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system ®

7.1.2 m_fnWriteSector

m_fnWriteSector writes a single sector to the block device (usually an SD card or flash memory).

ECF_ErrorCode m_fnWriteSector (
struct ECF_BlockDriver *pBlockDriver,
uint32 t sector,
uint8 t *pData,
uint8 t flags
);

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used
by the block driver to access the m_BlockDriverData member or to call the other functions.

sector
This specifies which sector to write.

pData
This points to a uint8_t array with the data for the block driver to write.

flags
These are flags for the write.

ECF WRITESECTOR 512 BYTES ONLY:
If this flag is set, the block driver only needs to write 512 bytes, regardless of the sector size.

The buffer pointed to by pData is only 512 bytes big so if set, you must not read more than
512 bytes.

ECF WRITESECTOR IS TRIMMED:

If this flag is set, the block that is about to be written has previously been trimmed and is
probably already cleared.

Return value
Return ECFERR_SUCCESS if the read was successful.

If the write fails, return one of the ECFAT error codes defined in ECFAT.h. You can also define
your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks
The m_fnWriteSector function is part of struct ECF_BlockDriver. You need to supply it when
writing a block driver. ECFAT will call this function when it wants to write a sector to the storage
device.

On both single- and multithreaded systems, EcCFAT will make certain that it will not call any of
the other block driver functions until this call has been completed so you do not need to
implement any locking in the block driver unless it is needed for other purposes.

Note: If you use journaling and/or wear-leveling, you must respect the
ECF_WRITESECTOR_512 BYTES_ONLY flag. If you ignore it and write the entire sector you
risk reading beyond the end of the buffer pointed to by pData which can result in a bus fault.

EcFAT API Reference Page 46 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

Example Code

See example for m_fnReadSector

alela s

“w Nl

EmbCode,

- Software for your embedded system

EcFAT API Reference

Page 47 of 59

Document name: Version

EcFAT API Reference 3.0.4 mbCOde

Internal reference: b
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 -Soﬂware for your embedded system - ®

7.1.3 m_fnGetVolumelnformation

m_fnGetVolumelnformation returns information about the disk size and sector size of a block device.

ECF_ErrorCode m_fnGetVolumeInformation (
struct ECF_BlockDriver *pBlockDriver,
uintlé t *pSectorSize,
uint32 t *pNumberOfSectors

) ;

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used
by the block driver to access the m_BlockDriverData member or to call the other functions.

pSectorSize
This is a pointer to a uint16_t that should be set to the sector size.

pNumberOfSectors
This is a pointer to a uint32_t that should be set to the number of sectors.

Return value
Return ECFERR_SUCCESS if the read was successful.

If the write fails, return one of the ECFAT error code defined in ECFAT.h. You can also define
your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks
The m_fnGetVolumelnformation function is part of struct ECF_BlockDriver. You need to supply
it when writing a block driver. ECFAT will call this function to determine the sector size and how
many sectors are there are on a block device.

On both single- and multithreaded systems, ECFAT will make certain that it will not call any of
the other block driver functions until this call has been completed so you do not need to
implement any locking in the block driver unless it is needed for other purposes.

Example Code
See example for m_fnReadSector

EcFAT API Reference Page 48 of 59

Document name: Version

EcFAT API Reference 3.0.4 mbCOde

Internal reference: b
PI’OdUCtS/ECFAT/AP| Refel‘ence/4060 Software for your embedded system - ®

7.1.4 m_fnTrimSectorRange

m_fnTrimSectorRange trims a range of sectors on the block device. By trimming sectors, ECFAT
signals that these sectors are not used and does not need to be stored.

ECF_ErrorCode m_fnTrimSectorRange (
struct ECF_BlockDriver *pBlockDriver,
uint32 t startSector,
uint32 t endSector

) ;

Parameters

pBlockDriver
This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used
by the block driver to access the m_BlockDriverData member or to call the other functions.

startSector
This specifies the first sector to trim.

endSector
This specifies the last sector to trim.

Return value
Return ECFERR_SUCCESS if the read was successful.

If the trim fails, return one of the ECFAT error codes defined in ECFAT.h. You can also define
your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks
The m_fnTrimSectorRange function is part of struct ECF_BlockDriver. You may supply it when
writing a block driver. This function is not mandatory in a block driver and can be NULL.

EcFAT will call this function to trim sectors. The purpose of trimming is to tell the block device
that a sector is no longer in use. Some block drivers benefit from knowing which sectors are in
use by e.g. pre-erasing these sectors or by using the unused storage area for something else.

The sector range from and including startSector to and including endSector should be trimmed.
That is, m_fnTrimSectorRange(&bd, 5, 7) trims sectors 5, 6 and 7. m_fnTrimSectorRange(&bd,
9, 9) trims sector 9.

Since most block drivers will pre-erase a sector when m_fnTrimSectorRange is called, ECFAT
will try to call m_fnTrimSectorRange with as large ranges as possible so if the underlying
hardware supports erases larger than a sector, it is useful to check the range and see if a more
efficient operation can be performed.

On both single- and multithreaded systems, ECFAT will make certain that it will not call any of
the other BlockDriver functions until this call has been completed so you do not need to
implement any locking in the block driver unless it is needed for other purposes.

Example Code

// Assume a flash chip with 1024 pages where there is a page-erase,

EcFAT API Reference Page 49 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

EmbCode,

- Software for your embedded system

// a block-erase (16 pages on this chip) and a chip-erase.
ECF_ErrorCode FlashDriver TrimSectorRange (struct ECF BlockDriver *bd,
uint32 t startSector, uint32 t endSector)

{

uint32 t sector;

if (startSector == 0 && endSector == 1023) {

EraseFlashChip() ;

} else if((startSector & OxF)

== 0 && (endSector & OxF)

== 0xF) {

for (sector = startSector;sector <= endSector;sector += 16)
EraseFlashBlock (sector>>4) ;

} else {

for (sector = startSector;sector <= endSector;sector++)
EraseFlashSector (sector) ;

}

return ECFERR SUCCESS;

EcFAT API Reference

Page 50 of 59

Document name:
EcFAT API Reference

Version
3.04

Internal reference:
Products/EcFAT/API Reference/4060

7.2 struct ECF_FileHandle

EmbCodecom

- Software for your embedded system

struct ECF_FileHandle is used by the ECFAT file handling functions to represent a handle to an open
file. It is also used by the ECF_ScanDir* functions to keep track of the current director